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Frequency-dependent viscosity near the critical point: The scale to two-loop order
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The recent accurate measurements of Berg, Moldover, and Zimmerli@Phys. Rev. Lett.82, 920~1999!; Phys.
Rev. E60, 4079 ~1999!# of the viscoelastic effect near the critical point of xenon has shown that the scale
factor involved in the frequency scaling is about twice the scale factor obtained theoretically. We show that this
discrepancy is a consequence of using first order perturbation theory. Including two-loop contribution goes a
long way towards removing the discrepancy.
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The shear viscosityh of a liquid-gas system near th
critical point or a binary liquid mixture near the critical con
solute point has a weak divergence characterized by a s
exponentxh . If e is the deviation of the temperatureT from
the critical temperatureTc , i.e., e5(T2Tc)/Tc, then the
correlation lengthj of the fluctuation diverges ase→0, ac-
cording toj;e2n. The divergence of the shear viscosity
expressed as

h}jxh. ~1!

If the measurements are conducted at a finite frequenc
new length scale enters the problem. This is due to crit
slowing down, which implies that the timet of the fluctua-
tions of sizek21 (k is the wave number of the fluctuation!
diverges ast}k2z for small k. This produces a length sca
t1/z, which is v21/z, wherev is the frequency at which the
process is being probed. If the external frequency goe
zero, this length scalel v}v21/z goes to infinity andj is the
only controlling length in the problem. For a finite value
l v , it is possible to go also enough to the critical point, su
that j; l v , and then asj exceedsl v , the viscosity can
change no longer and is determined byl v . Thus, forj→`,

h} l v
xh}v2xh /z. ~2!

In D dimension, the exponentz5D1xh and finite values of
j andv, the viscosity is described by the scaling law@1,2#,

h~j,v!5jxh@S~v/G0kz!#2xh /(D1xh), ~3!

where G0kz is the characteristic frequency associated w
the decay of fluctuations andS is a scaling function charac
terized byS(0)5const andS(y)}y for y@1. The above
constraints onS(y) help us recover Eqs.~1! and~2!. In view
of the smallness of the exponentxh (.0.067), we can ex-
pand jxh as 11xh ln j, and writing @S(y)#2xh /D1xh51
2@xh /(D1xh)# ln S(y)1•••, we arrive at

Dh5h~j,v!2h~j,0!52h~j,0!

3@xh /~D1xh!# ln~v/G0kz!. ~4!

The simplest scaling function that one can think of is

ln S~V!5 ln~11aV!, ~5!
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whereV5v/(2G0kz)5v/(2kT/6ph0)k(31xh)k which is
the scaled frequency with the frequency scale set by the
wasaki form and ‘‘a’’ is a number ofO(1), which describes
where the crossover from the ‘‘hydrodynamic’’~zero fre-
quency! to the ‘‘nonhydrodynamic’’~frequency limited! be-
havior takes place.

In the one-loop self-consistent calculation, the frequen
dependent shear viscosity inD53 is given by~see Fig. 1!

h1~k,v!5 1
4 E d3p

~2p!3

4p4 sin2u cos2u

~p21k2!2@2 iv12G0p2Ap21k2#

5
1

30p2G0

E p6dp

~p211!2@2 iV1p2Ap211#
, ~6!

leading to

Dh~k,v!5
1

30p2G0
E p6dp

~p211!2

3F 1

@2 iV1p2Ap211#
2

1

@p2Ap211#
G .

~7!

Comparing Eq.~7! with Eqs.~4! and~5!, the function lnS(V)
to one loop is lnS1(V), given by

ln S1~V!52E p6dp

~11p2!2

3S 1

@2 iV1p2Ap211#
2

1

@p2Ap211#
D ,

~8!

which has the high frequency form lnS1(V).1
3 ln V/e423ln2,

corresponding to ‘‘a’ ’ 50.147. Yet another way of estima
ing ‘‘ a’’ is to study the low frequency limit of Eq.~8!, from
which we find

ln S1~V!52 iV
p

16
1O~V2!, ~9!
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which corresponds to ‘‘a953p/1650.589, when we com-
pare with the low frequency Taylor expansion of Eq.~9!.
Thus, we see that for the crossover frequency scale ‘‘a,’’
there are two possible estimates@2#. One comes from the
high frequency end, which we callahi

and another from the

low frequency end, which we callal 0
. At one loop level

ahi
50.147 andal 0

50.589. The two estimates are quite d
ferent. The full scaling function, obtained by evaluating t
complete integral in Eq.~8!, gives the gradual change i
scale fromal 0

to ahi
. This was done in Ref.@2#.

In recent accurate viscoelastic effect measurements
Berget al. @3,4#, it was reported that the true frequency sca
is about twice as big as the theoretical one. Since the o
loop scaling function has a changing frequency scale, i
worthwhile examining this observed discrepancy mo
closely. Accordingly, we analyzed the data of Berget al.
slightly differently. For the differente5(T2Tc)/Tc values
and frequencies studied by Berget al., we evaluate the di-

FIG. 1. Dimensionless ratio of imaginary to real parts of t
finite frequency shear viscosity plotted against the dimension
scaled frequencyV5@v/(kTk3/3ph0)# for low values ofV. f is in
Hz. The dashed line shows the one-loop calculation, while the s
line is the two-loop result.
-
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mensionless frequency V52p@3ph0 /kTk(31xh)k

5p f t0, wheret05kTk(31xh)/6ph0 is the decay rate for
concentration fluctuations. We notice that more than 75%
the data of Berget al. are in the rangeV,1. In the range
whereV is small, the ratio R5@ Im h(k,v)/Reh(k,v)# is
linear in V. This ratio is the most direct probe of the vis
coelastic effect, and one needs to concentrate on it. It is c
that for V@1, R5(xh/31xh)al 0

V.

The result of plottingR versusV is shown in Fig. 1. The
one-loop theory is shown by the dashed line. The slope
the data is almost double. This is the discrepancy reporte
Berg et al. In view of this difference, we have undertaken
two-loop calculation of the frequency scale. In the low fr
quency end, we find a significant correction to the scale. T
results in the solid line shown in Fig. 1. In the high fr
quency end, the correction to the scale is similar. The dat
the high frequency end is sparse. As far as we can tell,
scale that can be extracted from the data (ahi

) is significantly

smaller than the low frequency result (al 0
). This is consistent

with the calculation. The remaining difference between
experimental slope at low frequencies and the calcula
can be attributed to the loops left out. Including the two-lo
correction is a significant effect; it is a clear cut pointer to t
importance of higher order terms in perturbation theory
this end. We now outline the calculation involved. It shou
be noted that in the self-consistent scheme that we emp
the two-loop graphs corresponding to self-energy inserti
in the propagating lines have already been taken into acc
at the dressed one-loop level. Consequently, treating the
tex correction alone enables us to provide a complete t
loop order calculation.

The two loop contribution to the shear viscosityh ~see
Fig. 2! is given by the vertex correction diagram and can
written as

ss

id

FIG. 2. Diagrammatic expansion of shear viscosity to two-lo
order.
h2k25
1

D21E dDp

~2p!DE dDp

~2p!D

@p22~kW2pW !2#@q22~kW2qW !2#

h0~p21k2!~q21k2!upW 1qW 2kW u2

3
@patab~kW !qb#@patab~kW2pW 2qW !qb#

@2 iv1G~pW ,k!1G~kW2pW ,k!#@2 iv1G~qW ,k!1G~kW2qW ,k!#
. ~10!
In the above, tab(kW ) is the projection operator,dab

2(kakb /k2), andG(k,k) is the fully dressed order param
eter relaxation rate. From the right-hand side, we need
extract theO(k2) term. We also need to average over

possible directions ofkW . Accordingly,
to
l

p22~kW2pW !2.2kW•pW ,

q22~kW2qW !2.2kW•qW ,

and
2-2
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^~kW•pW !~kW•qW !patab~kW !qb&5
k2p2q2@D cos2u21#

D~D12!
.

Everywhere else on the right-hand side, we may setk50 on
the right-hand side of Eq.~10!. Thus, the directional averag
of patab(kW2pW 2qW )qb becomeŝ patab(pW 1qW )qb& and can
be written as

^patab~pW 1qW !qa&52
p2q2sin2u

~pW 1qW !2
. ~11!

We can now write Eq.~10! as

h25
4

~D21!D~D12!h0
E dDp

~2p!D

3E dDq

~2p!D

p4q4 sin2u@12D,cos2u#

~p21k2!~q21k2!~pW 1qW !4

3
1

@2 iv12G~pW ,k!#@2 iv12G~qW ,k!#
. ~12!

Specializing toD53, we can replace the relaxation ra
G(k,k) by an accurate approximate to the full Kawasa
function asG(k,k)5G0k2A(k21k2), and we have

h25
1

30h0G0G0
E d3p

~2p!3

3E d3q

~2p!3

p4q4 sin2u@123 cos2u#

~p211!~q211!~pW 1qW !4

3
1

@2 iV1p2A~11p2!@2 iV1q2A~11q2!
.

~13!

The two-loop contribution lnS2 to lnS is, accordingly,

ln S252
4p2

h0G0
E d3p

~2p!3E d3q

~2p!3

p4q4 sin2u@123 cos2u#

~11p2!~11q2!~pW 1qW !4

3S 1

@2 iV1p2A~11p2!] @2 iV1q2A~11q2!

2
1

p2A~11p2q2A~11q2D . ~14!

Our first task is to ensure that the zero frequency integ
reproduce the correct two loop viscosity exponentxh . Ac-
cordingly, from Eqs.~6! and~13!, we find~the producth0G0
is fixed by the diffusion coefficient diagrammatics to be1

16 )
02020
i
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h5h1~k,0!1h2~k,0!.h0

8

15p2 S 11
8

3p2D ln
L

k
1•••.

~15!

The coefficient ofh0ln L/k in the above equation is within
2% ~the correction coming from two-loop self-energy inse
tion graphs and the dissipative four point coupling! of the
exponentxh . We can now carry out a Taylor expansion
the right-hand side of Eq.~14!. This yields the two-loop
contributiona2 to the scale factoral0 as

a25 16
15 E d3p

~2p!3~11p2!2E d3q sin2u~123 cos2u!q2

~2p!3~11q2!3/2~pW 1qW !4
,

~16!

which yields

al 0
53S p

16
1

8

3p2
3

2p

3
30.115D 50.78. ~17!

Using the above scale, the solid line has been drawn in
1. While this is a significant improvement over the one-lo
answer~dashed line!, we still have an infinite number o
loops left out and the combined effect should be to remo
the remaining discrepancy@5–10#.

Turning to the high frequency side, evaluation of the a
propriate integrals@Eq. ~13!# show that the behavior of zer
frequency viscosity to two-loop order is

h5h0

8

15p2 S 11
8

3p2D
3S ln

L

k
2

S 4

3
2 ln 2D1

8

3p2
30.85

S 11
8

3p2D D , ~18!

while the high frequency limit is

h5h0

8

15p2 S 11
8

3p2D S 1

3
ln

L3

2 iV
2

8

3p2
30.90

S 11
8

3p2D D .

~19!

From Eqs.~18! and ~19!, the two-loopahi
is

ahi
50.23, ~20!

which is a 50% increase over the one-loop result.
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Thus, we see that the scale factor associated with the
quency dependent viscosity near the critical point underg
a significant enhancement both in the high and low f
v.

E

02020
e-
es
-

quency ranges, when the perturbation theory is carried ou
two-loop order. This reduces the discrepancy between
measurements of Berget al. and the one-loop calculation.
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