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Frequency-dependent viscosity near the critical point. The scale to two-loop order
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The recent accurate measurements of Berg, Moldover, and ZinmiiRbyls. Rev. Lett82, 920(1999; Phys.
Rev. E60, 4079(1999] of the viscoelastic effect near the critical point of xenon has shown that the scale
factor involved in the frequency scaling is about twice the scale factor obtained theoretically. We show that this
discrepancy is a consequence of using first order perturbation theory. Including two-loop contribution goes a
long way towards removing the discrepancy.
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The shear viscosityy of a liquid-gas system near the whereQ = w/(2I'g«*) = w/(2kT/67 7o) k(3+x,)* which is
critical point or a binary liquid mixture near the critical con- the scaled frequency with the frequency scale set by the Ka-
solute point has a weak divergence characterized by a smallasaki form and ‘a” is a number ofO(1), which describes
exponenix,,. If e is the deviation of the temperatufefrom  where the crossover from the “hydrodynamidzero fre-
the critical temperaturdl;, i.e., e=(T—T.)/T,, then the quency to the “nonhydrodynamic”(frequency limited be-
correlation lengthé of the fluctuation diverges as—0, ac-  havior takes place.
cording toé~ e~ 7. The divergence of the shear viscosity is  In the one-loop self-consistent calculation, the frequency

expressed as dependent shear viscosity =3 is given by(see Fig. 1
7% . D [ 4% 4p*sirtg coLo
(K, 0)=7 f
If the measurements are conducted at a finite frequency, a ' ) (2m)3 (p?+ k2 —iw+ 2T op?\p?+ «?]

new length scale enters the problem. This is due to critical
slowing down, which implies that the time of the fluctua- 1 f pbdp

tions of sizek™ ! (k is the wave number of the fluctuatipn = ) )
diverges asrock~Z for smallk. This produces a length scale 30m°To (p?+1)[—i+p*Vp?+1]
2, which is w~*?, wherew is the frequency at which the .
process is being probed. If the external frequency goes tgzadmg to
zero, this length scalke,w~'# goes to infinity andt is the 6
only controlling length in the problem. For a finite value of Ak, @)= 1 p~dp
[, itis possible to go also enough to the critical point, such ’ 307yt (p?+1)?
that ¢&~1,, and then ast exceedsl,, the viscosity can
change no longer and is determinedlhy Thus, foré—oo, y 1 1
. @ [—iQ+p?/p?+1] [p*/p?+1]
v (7)

In D dimension, the exponeat=D +x,, and finite values of ) ) )
¢ and w, the viscosity is described by the scaling law2], ~ Comparing Eq(7) with Egs.(4) and(5), the function IrS(()
to one loop is Ir5,(Q2), given by

7(€,0)=ES(w/Tor?)] >/ CX, ©)

p°dp
whereTo«? is the characteristic frequency associated with N Si(€2)=— 11p)?
the decay of fluctuations arfslis a scaling function charac- P
teriz?d _b¥/8(25)(= )CanSt andS(y)myEfo;1§/>ld(;')htla ak_)ove ( 1 1
constraints ors(y) help us recover Eq$l) and(2). In view X . - ,
of the smallness of the exponexj (=0.067), we can ex- [—iQ+p?Vp°+1] [p?Vp?+1]
pand &7 as 1+x,In& and writing [S(y)] *»/Pt=1 (8)
—[x,/(D+x,)]InSy)+---, we arrive at

which has the high frequency form $(Q)=2In Q/e* 32,

An=n(§ 0)—n(£0=—n7(£0) corresponding to & =0.147. Yet another way of estimat-
X [%,/(D+X,) 1IN /T ok?). 4) ing “a” is to study the low frequency limit of Eq(8), from

which we find
The simplest scaling function that one can think of is
v
— i — 2
INS(Q)=In(1+aQ), (5) INS;(Q)=—iQ 76+0(0%), ©)
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° // . FIG. 2. Diagrammatic expansion of shear viscosity to two-loop
8ot o - order.
a
s 5/ a Symbol  f mensionless frequency Q=2w[3mne/kTr(3+x,)"
xe0- avy / o %2 = 7f 7o, Wherero=kT«(3+x,)/67 7, is the decay rate for
e 8 57, 2 g concentration fluctuations. We notice that more than 75% of
w- Lo / v 3 the data of Berget al. are in the rangd)<<1. In the range
v Pl o 2 where () is small, the ratio R-[Im 5(«x,0)/Ren(k,w)] is
| &)/ L 4 linear in Q). This ratio is the most direct probe of the vis-
00877 o e Lot ottt coelastic effect, and one needs to concentrate on it. It is clear
| that forO>1, R=(x,/3+x,)a Q.
0 ! ! | ! !
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The result of plottingR versus(Q) is shown in Fig. 1. The
one-loop theory is shown by the dashed line. The slope of

FIG. 1. Dimensionless ratio of imaginary to real parts of thethe data is almost double. This is the discrepancy reported by
finite frequency shear viscosity plotted against the dimensionlesBerg et al. In view of this difference, we have undertaken a

scaled frequenc) =[ w/(kT«3/37 5,)] for low values ofQ). fis in

two-loop calculation of the frequency scale. In the low fre-

Hz. The dashed line shows the one-loop calculation, while the soligyuency end, we find a significant correction to the scale. This

line is the two-loop result.

which corresponds to & =37/16=0.589, when we com-
pare with the low frequency Taylor expansion of E).

Thus, we see that for the crossover frequency scalg
there are two possible estimatg?]. One comes from the
high frequency end, which we cailni and another from the

low frequency end, which we cal, . At one loop level
an =0.147 anda,0=0.589. The two estimates are quite dif-

results in the solid line shown in Fig. 1. In the high fre-
quency end, the correction to the scale is similar. The data in
the high frequency end is sparse. As far as we can tell, the
scale that can be extracted from the daa:,ail)(is significantly
smaller than the low frequency resua,g). This is consistent
with the calculation. The remaining difference between the
experimental slope at low frequencies and the calculation
can be attributed to the loops left out. Including the two-loop
correction is a significant effect; it is a clear cut pointer to the

ferent. The full scaling function, obtained by evaluating thejmportance of higher order terms in perturbation theory at
complete integral in Eq(8), gives the gradual change in this end. We now outline the calculation involved. It should

scale froma,  to ay. This was done in Ref2].

be noted that in the self-consistent scheme that we employ,

In recent accurate viscoelastic effect measurements dhe two-loop graphs corresponding to self-energy insertions
Berget al.[3,4], it was reported that the true frequency scalein the propagating lines have already been taken into account
is about twice as big as the theoretical one. Since the onet the dressed one-loop level. Consequently, treating the ver-
loop scaling function has a changing frequency scale, it id¢ex correction alone enables us to provide a complete two-

worthwhile examining this observed discrepancy moreloop order calculation.

closely. Accordingly, we analyzed the data of Beagal.
and frequencies studied by Beeg al, we evaluate the di- written as

2:
7K D—1

1 f d®p [ d°p [p?—(k—-p)2I[q®—(k—)?]
(2m)PJ) (2m)P 7o(p?+ k?) (g% + «?)|p+q— k|2

[PaTap(K) UGN PaTap(K—P—a)dg]

X

[—iw+T(p,k)+T(k—p,x)][—i0+T(q,x)+T(K—q,x)]

The two loop contribution to the shear viscosity (see
slightly differently. For the differene=(T—T.)/T. values Fig. 2) is given by the vertex correction diagram and can be

(10

In the above, raB(IZ) is the projection operatord,gs
—(kukﬁ/kz), andI'(k, ) is the fully dressed order param-
eter relaxation rate. From the right-hand side, we need to
extract theO(k?) term. We also need to average over all

possible directions ok. Accordingly, and
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p*~(k—p)?=2k-p,

o”= (k—q)?=2k-q,
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I . k?p?g?[D cog0—1] 8 8 A
((K-p)(K-A)PaTap(K)ag) = D(D+2) : 7=11(k,00+ 72(k,00= o — | 1+ ——|In—+- -
157 37 K

(15
Everywhere else on the right-hand side, we maykse® on
the right-hand side of Eq10). Thus, the directional average
A i The coefficient ofypgln A/« in the above equation is within
of k—p— become + and can 770 a
be B&’rﬂ‘{gg asp Dds APuTas(P+A)dg) 2% (the correction coming from two-loop self-energy inser-
tion graphs and the dissipative four point coup)ira the
exponentx,,. We can now carry out a Taylor expansion of

(Putas(P+6)T) = — p%q’sir’g 11 the right-hand side of Eq(14). This yields the two-loop
PaTap(PTA)Ga (p+q)? contributiona, to the scale factoa,, as

We can now write Eq(10) as

[

f d3p J' d3q sirf6(1—3 cog6)q?
(2m)

a,= v
e 31+p22) (2m3(1+9)¥p+q)
- 4 f d®p (16)
727 (D-1)D(D+2) 7o) (2m)P
which yields
Xf d°q p*g*sirfg[1—D,cogd]
(2m)® (p?+ k) (g% + k) (p+0a)* |7 8 2w B
. a|0—3 16+ 37T2>< 3 X 0.115| =0.78. 17

X— = : —. (12
[—iw+20(p, ][ —iw+20(q,x)] Using the above scale, the solid line has been drawn in Fig.
1. While this is a significant improvement over the one-loop
Specializing toD=3, we can replace the relaxation rate answer(dashed ling we still have an infinite number of

I'(k,x) by an accurate approximate to the full Kawasakiloops left out and the combined effect should be to remove

function asl'(k, k) =I'ok?\/(k?+ x?), and we have the remaining discrepandp—10.
Turning to the high frequency side, evaluation of the ap-
1 d%p propriate integral$Eq. (13)] show that the behavior of zero
No= f frequency viscosity to two-loop order is
307m0l'ol'0) (27)3
d3q pg*sirfe[1—3 coge 8 8
Xf q p'q’simel foﬁ] n=m0—s| 1+ —
(2m)? (pP*+1)(q*+1)(p+a)* 15754 3w
1 4 8
X . §—In2 +—2X085
[—iQ+p*V(1+p)[—iQ+a*V(1+0) x| In - 37 19
K 8 '
(13 .
372

The two-loop contribution I1$, to InSis, accordingly,
while the high frequency limit is

472  d3p d3q p*g*sirfd[1—3 cogd]
InS,=— f

r 3 3 2 Y
Mot o) (2m)°) (2m)° (1+p)(1+q°)(p+Qq) % %090
1 8 (1+ 8 ) L A% 372
n=1n7_> Sl 2=~
: . 1572 372/ 3 —iQ 8
([—ump2ﬁ1+p2>][—un+q2ﬁ1+q2> i 1
T
1 19
- . (14 19
P?V(1+p?a®V(1+0°
From Egs.(18) and(19), the two-loopa,1i is
Our first task is to ensure that the zero frequency integrals a, =0.23, (20)

reproduce the correct two loop viscosity exponept Ac-
cordingly, from Eqs(6) and(13), we find(the productzyyl’y
is fixed by the diffusion coefficient diagrammatics to¢  which is a 50% increase over the one-loop result.
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Thus, we see that the scale factor associated with the freguency ranges, when the perturbation theory is carried out to
guency dependent viscosity near the critical point undergoesvo-loop order. This reduces the discrepancy between the
a significant enhancement both in the high and low fre-measurements of Bergf al. and the one-loop calculation.
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